What is carbon capture and storage?
Climate change presents a formidable challenge, and we are unequivocally in a climate emergency due to the escalating levels of greenhouse gases, particularly carbon dioxide (CO₂). To reduce climate change and mitigate this crisis, we must cut CO₂ emissions and address the CO₂ already in the atmosphere. Carbon capture and storage (CCS) represents a significant technological advancement in addressing environmental challenges. It captures CO₂ emissions, from industrial sources and stores them underground, preventing the emissions from entering the atmosphere.
What is carbon capture and storage?
Definition
Carbon Capture and Storage (CCS) is a technique that involves the capture, transport, and long-term sequestration of carbon dioxide emissions. This technology is primarily used in industrial applications and power generation to capture CO₂ produced from the combustion of fossil fuels. Once captured, the CO₂ is then safely transported and stored in geological formations. Such as depleted oil and gas fields or deep saline aquifers, effectively preventing it from entering the atmosphere and contributing to climate change.
The process of CCS
Capturing CO₂
The first step in CCS is capturing CO₂ from power plants and industrial facilities. There are three main techniques for capturing CO₂:
- Pre-combustion carbon capture: Involves converting fossil fuels into a mixture of hydrogen and CO₂ before combustion.
- Post-combustion capture: Captures CO₂ from the flue gases after burning fossil fuels.
- Oxy-fuel combustion: Burns fossil fuels in oxygen instead of air, producing a flue gas, mainly water vapour and CO₂, making it easier to capture.
Transporting CO₂
Once we capture CO₂, we must transport it to a storage site. This is typically done using pipelines. However, it can also involve ship transport, especially for offshore carbon storage sites.
Storing CO₂
The final step is storing the CO₂ in geological formations. Potential carbon storage sites include:
- Depleted Oil and Gas Fields: These fields have proven to contain hydrocarbons for millions of years.
- Deep Saline Aquifers: Saline formations can store large amounts of CO₂ and are widely available.
- Basalt Formations: Certain volcanic rocks can react with CO₂ to form solid minerals, also called mineralization, providing a permanent storage solution.
Benefits of Carbon Capture Storage (CCS)
Reducing emissions
Carbon Capture Storage (CSS) is highly effective in reducing carbon dioxide emissions into the atmosphere. It can capture up to 90% of CO₂ from power plants and industry, significantly reducing the amount of this greenhouse gas that contributes to climate change.
Addressing legacy emissions
CCS can also capture and store CO₂ from the air. Direct Air Capture (DAC) accomplishes this through a process. It would reduce current emissions, helping address the buildup of historical emissions in the atmosphere, which have accumulated over the past centuries.
Supporting clean energy transition
Carbon Capture Storage plays a paramount role in the transition to a low-carbon economy. It allows for the use of fossil fuels with less environmental harm, providing a bridge to a future powered by renewable energy.
Challenges and opportunities
Technical and economic challenges
- Investment Potential: While capturing, transporting, and storing CO₂ currently involves significant costs, these expenses highlight the substantial investment opportunities in CCS projects to innovate and reduce costs over time.
- Energy Intensity: CCS processes require significant amounts of energy, which can reduce the prevailing efficiency of power plants and industrial facilities.
- Infrastructure Development: Developing the necessary infrastructure for CO₂ transport and storage, such as pipelines and storage sites, requires substantial investment.
Future potential
Despite these challenges, CCS holds significant potential for large-scale CO₂ reduction. Tech advances should cut costs and boost efficiency, making Carbon Capture Storage (CSS) a better option. Additionally, policy support and financial incentives can drive the adoption of CCS technologies.
Carbon Capture and Storage is a compulsory technology in the fight against climate change. It captures and stores CO₂ emissions from industry and the air, helping reduce greenhouse gases and combat climate change. CCS technologies and Direct Air Capture is crucial to meeting climate goals and a low-carbon future. However, we must overcome challenges to develop and deploy them.
Featured news
Keep up with the latest in carbon capture innovation